

AS5410

3D-Hall Absolute Linear Position Sensor

General Description

The chip can measure magnetic field components in two different orientation directions and converts the magnetic field information into absolute position information. The AS5410 supports absolute linear position measurement applications.

Only a simple 2-pole magnet is required as the magnetic field source.

Using two 3D-Hall cells allows both absolute as well as differential 3D magnetic field measurement.

The differential measurement makes the AS5410 ideal for use in rough industrial position sensing applications that include not only dust, dirt or moisture but also unwanted magnetic stray fields.

All the signal conditioning, including compensation of temperature effects, linearization of the output is included in the IC.

The absolute position information of the magnet is directly accessible over a SPI interface and PWM output. A cycle redundancy check (CRC) allows verification of the received data

The AS5410 is available in a 14-pin TSSOP package and is qualified for an ambient temperature range from -40°C to 105°C.

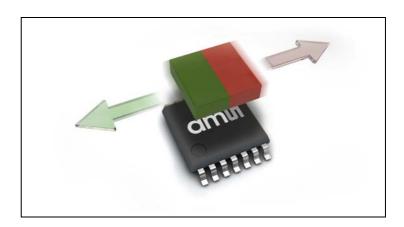
It operates at a supply voltage of 3.3V $\pm 10\%$.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of AS5410, 3D-Hall Absolute Linear Position Sensor are listed below:

Figure 1: Added Value of Using AS5410

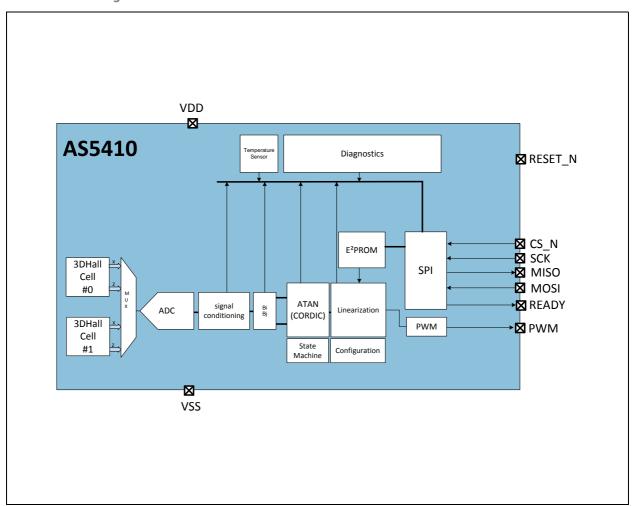

Benefits	Features
High flexibility in magnet selection	Wide magnetic input range
Suppression against magnetic stray fields	Dual 3D sensor pixel principle
Flexibility in choice of interface	SPI and PWM output
Contactless position sensing	Absolute linear position sensing
Flexible mechanical arrangement of magnet	Flexible configuration registers
External calculations of raw data	Bx and Bz raw data assessment possible
High linearity after teaching	33 linearization points to achieve high precision
Ideal for applications in harsh environments	 Integrated diagnostic functions Temperature range from -40°C to 105°C (ambient)

Applications

AS5410 is ideal for:

- Plunger position
- Pedal position
- Pneumatic and hydraulic cylinder position
- Automation with linear position stages through cascading of several AS5410 devices.

Figure 2: AS5410 Linear Position Sensing of the Magnet


Page 2 ams Datasheet
Document Feedback [v2-04] 2015-Oct-07

Block Diagram

The functional blocks of this device are shown below.

Figure 3: AS5410 Block Diagram

ams Datasheet Page 3
[v2-04] 2015-Oct-07
Document Feedback

Configuration:

3D Hall cells: The AS5410 contains two 3D Hall cells, spaced 2.5mm apart.

MUX: The multiplexer selects two magnetic field components Bx and Bz as the inputs

for the CORDIC. The selected inputs can either be absolute sensor signals or

differential sensor signals.

ADC: The Sigma-Delta ADC samples the Hall sensors signals selected by the MUX. The

sampling of the sensors is done sequentially.

Signal conditioning: This block includes offset and temperature compensation as well as amplitude

matching.

Bi/Bj values: This block represents the registers containing the input sensor signals of the

CORDIC inputs.

ATAN: Coordinate to Rotation Digital Computer: This block converts rectangular

coordinates (sine and cosine signals from the Hall sensors) into polar coordinates

(angle/distance and magnitude).

Linearization: A 33-point linearization of the CORDIC output data is available to accommodate a

variety of different magnet sizes and applications.

Temperature sensor: An on-chip temperature sensor is available. It can be read over the SPI interface.

This sensor is also used for signal conditioning.

PWM interface: The linearized measurement data is available over a single pin in the form of a

pulse width modulated (PWM) signal.

SPI interface: A bi-directional SPI interface allows communication with the chip, including

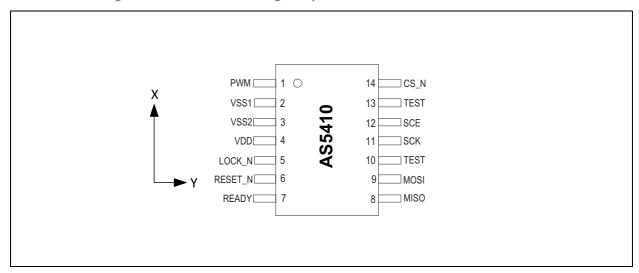
reading measurement data, E²PROM contents or writing configuration data.

E²PROM: The on-chip E²PROM contains the configuration data of the chip.

State machine: The state machine (sequencer) controls the automatic sequencing of

measurements. Once it is configured for a certain measurement, the state machine executes all necessary steps to perform a complete measurement cycle.

The configuration is pre-defined in the AS5410. Mode selection.


Page 4
Document Feedback
[v2-04] 2015-Oct-07

Pin Assignment

Pin Diagram

Figure 4: AS5410 Pin Configuration, TSSOP-14 Package (Top View)

Note(s) and/or Footnote(s):

1. X indicates the axis of lateral position measurement; z axis is perpendicular to the package surface

Pin Description

Figure 5: Pin Description

Pin TSSOP	Symbol	Туре	Description
1	PWM	DO	PWM output. The linearized output data is available on this pin.
2	VSS2	S	Ground (0V) ⁽¹⁾
3	VSS1	S	Ground (0V) ⁽¹⁾
4	VDD	S	Positive supply voltage (3.0V to 3.6V)
5	LOCK_N	DI_ST	Test pin, must be connected to VSS in normal operation
6	RESET_N	DIO_ST	Reset input (active low) to be connected with open drain driver. In case of output application leave open
7	READY	DO	Measurement ready signal is set high when a measurement cycle is completed and the results in the output registers are valid
8	MISO	DO_T	Master in / Slave out (SPI interface data output)
9	MOSI	DI_ST	Master out / Slave in (SPI interface data input)
10	TEST	DIO	Must be connected to VSS.

ams Datasheet Page 5
[v2-04] 2015-Oct-07
Document Feedback

Pin TSSOP	Symbol	Туре	Description
11	SCK	DI_ST	SPI interface clock input (max. 1 MHz)
12	SCE	DI_ST	Test pin, must be connected to VSS in normal operation
13	TEST	DI_ST	Test pin, must be connected to VSS in normal operation
14	CS_N	DI_ST	Chip select (active low)

Note(s) and/or Footnote(s):

- 1. Both VSS1 and VSS2 must be connected.
- 2. CS_N is active low and activates data transmission. If only a single device is used, CS_N may remain low for several commands, for example while reading the output registers.

Abbreviations for Pin Types in Figure 5:

DO : Digital output

DIO : Digital input & output

DI_ST : Digital Schmitt-Trigger input

DO_T : Digital output /tri-state

S : Supply pin

DIO_ST : Digital Schmitt-Trigger input & output

Page 6ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Electrical Characteristics

Absolute Maximum Ratings

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 6: **Absolute Maximum Ratings**

Parameter	Min	Max	Unit	Comments
DC supply voltage at pin VDD		5	V	
Input pin voltage	-0.3	VDD +0.3	V	
Input current (latchup immunity)	-100	100	mA	Norm: JEDEC 78
Electrostatic discharge		± 2	kV	Norm: MIL 883 E method 3015
Storage temperature	-55	150	°C	Min – 67°F; Max 257°F
Body temperature		260	°C	IPC/JEDEC J-Std-020 Lead finish 100% Sn "matte tin"
Relative humidity (non-condensing)	5	85	%	
Moisture sensitivity level (MSL)		3		Represents a maximum floor time of 168h
EEPROM read/write cycles		100	cycles	

ams Datasheet Page 7 **Document Feedback**

Operating Conditions

Operating conditions: operating temperature = -40°C to 105°C, VDD = 3.0-3.6V unless otherwise noted.

Figure 7: Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Note
VDD	Positive supply voltage	3.0	3.3	3.6	V	
Isupp	Supply current		15		mA	Active operation, continuous mode
T _{AMB}	Operating ambient temperature	-40		105	°C	-40°F to 221°F
twu			2		ms	From cold start
twlp	Wake up time			200	μs	From standby; see Single Loop Mode

System Performance Specifications

Operating conditions: magnet placement as specified in Figure 2, operating temperature = -40°C to 105°C, VDD = 3.0V to 3.6V, unless otherwise noted.

Figure 8: System Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Note
B _{IR_x}	Magnetic Range X	±5 ⁽¹⁾		±60	mT	
B _{IR_z}	Magnetic Range Z	±5 ⁽¹⁾		±50	mT	
S _{var_x}	Sensitivity Variation absolute X			±1.85 ⁽²⁾	%	
S _{var_z}	Sensitivity Variation absolute Z			±1.05 ⁽²⁾	%	
dSx/dSz	Sensitivity Ratio Drift X/Z			±1.00 ⁽³⁾	%	
T _{S0}	Sampling rate configuration 0 ⁽⁴⁾		1	1.08	ms	
T _{S1}	Sampling rate configuration 1 ⁽⁴⁾		2	2.15	ms	

Note(s) and/or Footnote(s):

- $1.\,Minimum\ condition\ is\ valid\ if\ both\ input\ components\ are\ above\ 5mT.$
- 2. Maximum value of 1 sigma (static variation). Sensitivity variation absolute from part to part. Better performance can be reached with linearization step at end of line.
- 3. Over temperature. Value in % (1 sigma).
- 4. Configurable in register 000Bh.

Page 8

Document Feedback

[v2-04] 2015-Oct-07

DC Characteristics for Digital Inputs and Outputs

CMOS Schmitt-Trigger Inputs: LOCK_N, RESET_N, CLK, MOSI, SCK, CS_N

Operating conditions: operating temperature = -40°C to 105°C, VDD = 3.0V to 3.6V unless otherwise noted.

Figure 9: CMOS Schmitt-Trigger Inputs

Symbol	Parameter	Min	Max	Unit	Note
VIH	High level input voltage	1.77	1.87	V	VDD = 3.0V
VIII	vin night level input voltage	2.07	2.23		VDD = 3.6V
VIL	Low level input voltage	1.12 1.27		V	VDD = 3.0V
VIL	Low level input voltage	1.42	1.52	V	VDD = 3.6V
l _{in}	Input current		10	mA	for Vin >VDD (1)

Note(s) and/or Footnote(s):

CMOS Outputs: READY, MISO, PWM

Operating conditions: operating temperature = -40°C to 105°C, VDD = 3.0V to 3.6V unless otherwise noted.

Figure 10: CMOS Outputs: READY, MISO, PWM

Symbol	Parameter	Min	Max	Unit	Note
VO _H	Output high level	2.5	VDD	V	
IO _H	Output current, source		8	mA	
VOL	Output low level	0	0.4	V	
IOL	Output current, sink		8	mA	

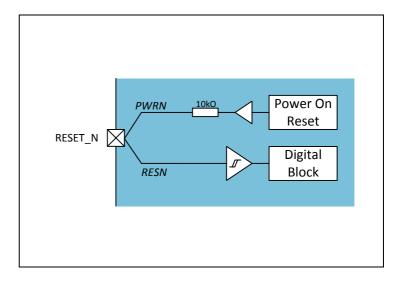
ams Datasheet Page 9
[v2-04] 2015-Oct-07
Document Feedback

^{1.} Input pin voltages higher than VDD (e.g. 5V TTL levels) must be limited by a series resistor to ensure that the maximum input current (lin) is not exceeded.

Power On Reset

Operating conditions: operating temperature = -40°C to 105°C

Figure 11: Power On Reset


Symbol	Parameter	Min	Тур	Max	Unit	Note
V _{ON}	Reset threshold; VDD level rising	1.4	2.38	2.97	V	
V _{OFF}	Reset threshold; VDD level falling	1.18	2.2	2.79	V	
Tpwrmin	Minimum reset pulse duration	1.8		7.1	μs	

RESET_N

The RESET_N pin can work as an output to monitor the internal power on reset signal (see Figure 12).

The RESET_N can also work as an input and trigger an internal reset. While power on cycle is not finished, communication is not allowed until the READY pin is high.

Figure 12: Power On Reset

Page 10ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

On-Chip Temperature Measurement

The ASS410 provides a linear on-chip temperature sensor which is use for automatic compensation of sensitivity and offset drifts for the Hall-In-One sensors.

The measured chip temperature is available in a register (0110h) and can be used for monitoring purposes.

Operating conditions: operating temperature = -40° C to 105° C

Figure 13: Temperature Sensor

Symbol	Parameter	Min	Тур	Max	Unit	Note
D _{temp}	Temperature signal at 25°		0		LSB	
Res _{temp}	Resolution	185	200	210	LSB/K	

ams Datasheet Page 11 [v2-04] 2015-Oct-07 Document Feedback

Detailed Description

Power Modes

The AS5410 can be configured for two power modes:

- Continuous mode
- Single loop mode

Continuous Mode

In this mode, the AS5410 is always active. The chip continuously updates the output registers. The completion of a new measurement is signalled with pin READY.

Single Loop Mode

The AS5410 features an automatic power down mode. After completion of a measurement, the chip automatically suspends to standby. The SPI interface remains active. The control of this mode is possible over register 000Eh (see Register Description). A high on the Ready output indicates that a measurement is completed. The AS5410 suspends to stand-by state after the Ready output has been set.

Serial Interface (SPI)

The SPI interface provides data transfer between AS5410 and the external microcontroller.

The minimum number of connections between microcontroller and AS5410 is three:

- 1. MOSI: Master Out Slave In; data transfer from microcontroller to AS5410 (Write)
- 2. MISO: Master In Slave Out; data transfer from AS5410 to microcontroller (Read)
- 3. SCK: Serial clock; Data is written and read with the rising edge of SCK

Optionally, two further connections may be used:

- CS_N: Chip select; this connection is mandatory when multiple AS5410 devices are connected in parallel. In electrically "noisy" environment it is recommended to use the CS_N connection in order to maintain safe data transfer.
 - For a single unit, this connection is optional as the data transmission is synchronized automatically by the number of SCK cycles. In this case it is recommended to verify the synchronization by CRC, Data readback or repeated reading and cross-checking of subsequent measurements.
- 2. Ready: this output indicates when data is ready, it is cleared by reading data from address 0100h or 0122h.

Page 12

Document Feedback

[v2-04] 2015-Oct-07

Figure 14: Hardware Connection Between AS5410 and Microcontroller

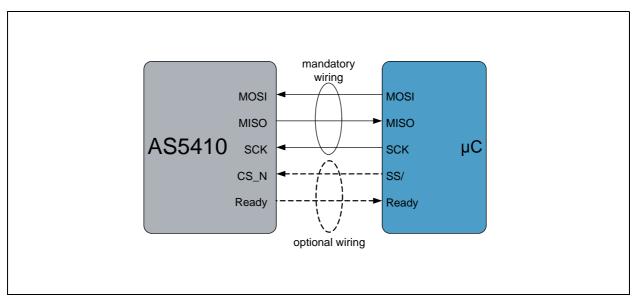
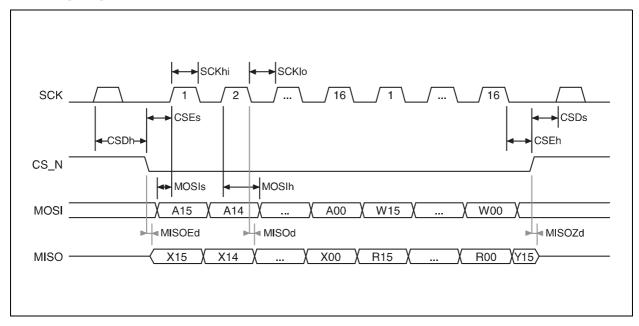



Figure 15: SPI Timing Diagram

The data bits sent to the chip via MOSI and the data bits received from the chip via MISO are defined as follows (see also Figure 15):

A15 ... A00 : 16-bit register address

W15 ... W00 : 16-bit write data (in write mode)

X15 ... X00, Y15 : 16-bit read data or previous command

(depending on mode)

R15 ... R0 : 16-bit read data in read mode or previous

data in write mode

ams Datasheet Page 13
[v2-04] 2015-Oct-07
Document Feedback

Figure 16: SPI Timing

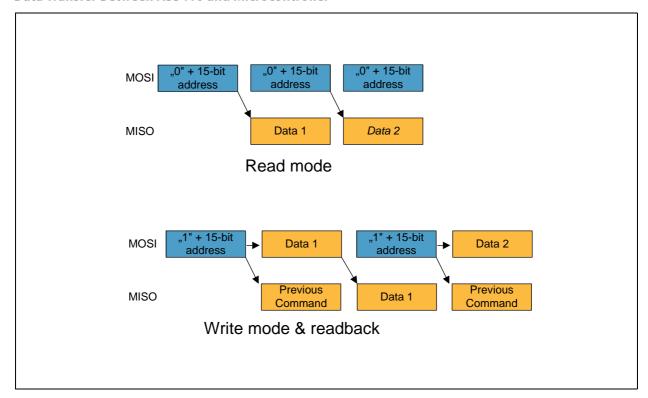
Symbol	Parameter	Min	Тур	Max	Unit	Note
f _{sck}	SCK frequency			1	MHz	
t _{SCKhi}	SCK pulse width HI	15			ns	
t _{SCKlo}	SCK pulse width LO	15			ns	
t _{CSEs}	CS_N enable setup time before SCK	10			ns	
t _{CSEh}	CS_N enable hold time after SCK	10 ns				
t _{CSDs}	CS_N disable setup time before SCK	10				
t _{CSDh}	CS_N disable hold time after SCK	10			ns	
t _{MOSIs}	MOSI setup time before SCK	10			ns	
t _{MOSIh}	MOSI hold time after SCK	10			ns	
t _{MISOd}	MISO delay after SCK			10	ns	
t _{MISOEd}	MISO enable delay after CS_N			10	ns	
t _{MISOZd}	MISO high Z delay after CS_N			10	ns	
t _{Or}	Output edge rise time			3	ns	
t _{Of}	Output edge fall time			3	ns	

Page 14ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Data Transfer Between AS5410 and Microcontroller

Data is transferred to the AS5410 via the MOSI pin (Master Out – Slave In) with the rising edge of SCK.

Data is read from the AS5410 from the MISO pin (Master In – Slave Out) with the rising edge of SCK.


The data format consists of data streams with 32 bit in length. The first 16 bits define a 16-bit address and the subsequent 16 bits contain read or write data.

The MSB of the address word A<15> defines the direction of data transfer:

A<15> = 0 READ; data transfer from AS5410 to microcontroller; read measurement data

A<15> = 1 WRITE; data transfer from microcontroller to AS5410; write configuration data

Figure 17:
Data Transfer Between AS5410 and Microcontroller

Read Mode

For reading a register, the 16-bit Read address (with A<15>=0) is sent to the MOSI pin. After 16 SCK cycles, data of the specified address is read from the MISO pin (see Figure 17). At the same time, the new address may be clocked into the MOSI pin.

ams Datasheet Page 15
[v2-04] 2015-Oct-07 Document Feedback

Continuous Measurement

It is possible to continuously read data from the AS5410 even if a new measurement is not yet finished. In this case, the last measurement data will be read. As soon as a new measurement is completed, it will be available at the SPI interface.

Write Mode and Readback

For additional safety and detection of communication errors, the actual contents of a register may be read at the same time as new data is written to this register.

In case of a Write command, the 16-bit Write address (with A<15>=1) is sent to the MOSI pin. After 16 SCK cycles, data following the address bits is written to the specified address via MOSI in (see Figure 17) At the same time, the present data of that register may be read from the MISO pin. Following the 16-bit of data (Data 1 in Figure 17), a new address may be written to the AS5410. While the new address is written, the address from the previous command is available at the MISO output.

Checksum

To avoid reading errors, the IC calculates a Checksum at every read cycle from the register content. The Checksum value is built by an XOR operation of the previous Checksum value and the read register content. The CRC is calculated every time a register is read.

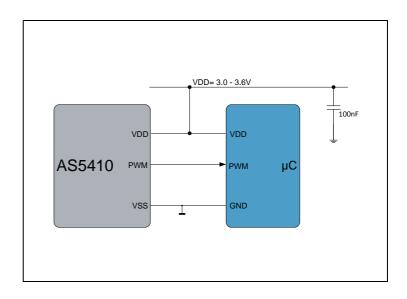
By choosing how often the Checksum is read and rechecked by the master it is possible to adjust the communication speed and safety level.

The Checksum value is stored in register 0108h (see Register Description).

Page 16
Document Feedback
[v2-04] 2015-Oct-07

PWM Data Transmission

In addition to the SPI interface, the AS5410 offers a PWM output that provides data transmission of the linearized output data over a single wire. The base frequency of the PWM is the system clock frequency, so one PWM digit always corresponds to approx. 125ns. The PWM resolution is set by 3 bits (PWMPreScale) which shift the 16 bit wide angle value by 0 to 7 digits.


The duty cycle of the PWM signal lies between 0% to 100%. In case of an error, the duty cycle is 0%.

If register 0122h value increases the duty cycle decreases. If register 0122h value decreases the duty cycle increases.

Figure 18: Register 000Dh

Register	Access	Bit	Function	Default	Note
		D15-10	PWMLimitHi <5:0>	0	PWM Limit High, Limits the PWM duty cycle to a maximum value
000Dh: PWM settings	R/W	D9-4	PWMLimitLo <5:0>	0	PWM Limit Low, Limits the PWM duty cycle to a minimum value
settings		D3	PWMEn	0	PWM Enable, Enables the PWM output
		D2-0	PWMPreScale <2:0>	0	PWM PreScale, Sets PWM frequency and resolution

Figure 19:
Single Pin Data Transmission Connection Diagram

ams Datasheet Page 17
[v2-04] 2015-Oct-07 Document Feedback

Figure 20: PWM Duty Cycle Information

PWM Duty Cycle [%]	Register 122h (Linear Angle) [LSB]
0	32767
50	0
100	-32768

Between 0% to 100% the duty cycle is linear to the Linear Angle.

PWM Enable: Must be set high to enable the PWM mode.

PWMPreScale0 to PWMPreScale3: The PWM resolution is set by those 3 Bits.

Figure 21: PWM Resolution

PWMPreScale0 to PWMPreScale3	Resolution (bit)	PWM (kHz)	
000	16	0.122	
001	15	0.244	
010	14	0.488	
011	13	0.977	
100	12	1.953	
101	11	3.906	
110	10	7.813	
111	9	15.63	

PWMLimitHi5 to PWMLimitHi0: Limits the PWM duty cycle.

Figure 22: PWM Upper Clamping Limits

Duty Cycle	PWMLimitHi0 to PWMLimitHi5
Minimum 50%	000000
Minimum 0%	111111

Page 18ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Between 0% to 50% the duty cycle limit is linear to the binary values selected by PWMLimitHi5 to PWMLimitHi0.

The limits are clamping limits (by selecting limits the resolution decreases).

PWMLimitLo5 to PWMLimitLo0: Limits the PWM duty cycle.

Figure 23: PWM Lower Clamping Limits

Duty Cycle	PWMLimitLo0 to PWMLimitLo5
Maximum 50%	111111
Maximum 100%	000000

Between 50% to 100% the duty cycle limit is linear to the binary values selected by PWMLimitLo5 to PWMLimitLo0. The limits are clamping limits (by selecting limits the resolution decreases).

Figure 24: PWM Setting Example

Clamping Range	0% – 100% PWM Duty Cycle	10% – 90% PWM Duty Cycle	50% – 50% PWM Duty Cycle
PWMLimitHi5	1	1	0
PWMLimitHi4	1	1	0
PWMLimitHi3	1	0	0
PWMLimitHi2	1	0	0
PWMLimitHi1	1	1	0
PWMLimitHi0	1	0	0
PWMLimitLo5	0	0	1
PWMLimitLo4	0	0	1
PWMLimitLo3	0	1	1
PWMLimitLo2	0	1	1
PWMLimitLo1	0	0	1
PWMLimitLo0	0	1	1

Register Description

The following registers can be addressed by the user via the SPI interface. Each register is 16-bit wide.

Registers not listed in the table below must not be modified from their factory programmed setting.

Note(s): "r" are reserved bits, they must not be modified (unless otherwise noted)

Register 000Bh

This register controls the sequencer

Figure 25: Register 000Bh

Register	Access	Bit	Function	Default	Note	
		D15 (MSB)	r	0		
		D14	r	0		
		D13	r	0		
		D12	r	0		
	R/W	D11	MgRangExt	0	"Magnet Range Extension" Enable the algorithm for an extended position range. 1 = Magnet Range Extension enabled 0 = Magnet Range Extension disabled	
000Bh: Sequencer control		R/W	D10	CoordSel	0	"Coordinate System Selection" 1 = The sign of the Lin Ang (Register 0122h) gets changed if MagDir (Register 000Bh) = 1 0 = Lin Ang (Register 0122h) gets not changed
		D9	r	0		
		D8	r	0		
		D7	Table Select 0	0	These bits allow the selection of 4 different operating modes, stored in 4	
			D6	Table Select 1	0	individual sequencer tables
		D5	MagDir	0	This bit allows to switch the magnet direction MagDir = 0: North pole must point in +x direction (pin 7 to pin1) Default/powerup mode. MagDir = 1: North pole must point in -x direction (pin1 to pin7). Preferred orientation to permit use of CoordSel bit.	

Page 20ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Register	Access	Bit	Function	Default	Note		
	000Bh: Sequencer R/W control	D4	DiffMd	0	Differential mode: 0 = Absolute measurement of Hall cells, 1 = Differential measurement of Hall cells		
		D3	r	0			
OOODI.				D2	r	0	
Sequencer		D1	RdyHZ	0	READY Tri-State: 0: The READY pin is always active. It must NOT be connected in parallel 1: The READY output may be connected in parallel. It is normally in high Z and only active (high) if the IC is selected. (1)		
		D0 (LSB)	r	0			

Note(s) and/or Footnote(s):

1. A 10k pull down resistor is mandatory at the common READY signal line if RdyHz = 1.

Figure 26: Possible Table Selection

	Table 0	Table 1	Table 2	Table 3
	Differen	tial Mode	Absolute Pixel1	
	1kHz Sample Rate 0.5kHz Sample Rate		1kHz Sample Rate	0.5kHz Sample Rate
CORDIC Input Values	Pixelcell0, Bz0 = 0x112h -Pixelcell1, Bz1 = 0x111h Pixelcell0, Bx0 = 0x114h -Pixelcell1, Bx1 = 0x113h	Pixelcell0, Bz0 = 0x112h -Pixelcell1, Bz1 = 0x111h Pixelcell0, Bx0 = 0x114h -Pixelcell1, Bx1 = 0x113h	Pixelcell1, Bz1 = 0x111h Pixelcell1, Bx1 = 0x113h	Pixelcell1, Bz1 = 0x111h Pixelcell1, Bx1 = 0x113h
Register B Settings	Table Select 1 Table Select 0 = 00 (mandatory) DiffMd = 1 (mandatory) MgRangExt = 0 or 1 depending on application	Table Select 1 Table Select 0 = 01 (mandatory) DiffMd = 1 (mandatory) MgRangExt = 0 or 1 depending on application	Table Select 1 Table Select 0 = 10 (mandatory) DiffMd = 0 (mandatory) MgRangExt = 0 (mandatory)	Table Select 1 Table Select 0 = 11 (mandatory) DiffMd = 0 (mandatory) MgRangExt = 0 (mandatory)

ams Datasheet Page 21
[v2-04] 2015-Oct-07
Document Feedback

Register 000Dh

Figure 27: Register 000Dh

Register	Access	Bit	Function	Default	Note
		D15 (MSB)	PWMLimitHi 5	1	
		D14	PWMLimitHi 4	1	
		D13	PWMLimitHi 3	0	PWM Limit High, Limits the PWM duty cycle to a
		D12	PWMLimitHi 2	0	maximum value
		D11	PWMLimitHi 1	1	
		D10	PWMLimitHi 0	1	
		D9	PWMLimitLo 5	0	
		D8	PWMLimitLo 4	0	
000Dh:	R/W	D7	PWMLimitLo 3	1	PWM Limit Low, Limits the PWM duty cycle to a
		D6	PWMLimitLo 2	1	minimum value
		D5	PWMLimitLo 1	0	
		D4	PWMLimitLo 0	1	
		D3	PWMEn	0	PWM Enable, Enables the PWM output
		D2	PWM PreScale 2	0	
		D1	PWM PreScale 1	1	PWM PreScale, Sets PWM frequency and resolution
		D0 (LSB)	PWM PreScale 0	1	

Register 000Eh

This register holds the sequencer control bits.

Figure 28: Register 000Eh

Register	Access	Bit	Function	Default	Note
		D15 (MSB) – D2	r	0	
000Eh: Sequencer control	R/W	D1	Seq	1	1 = Sequencer enabled (to be set to activate the state machine) 0 = Sequencer disabled
			SL	0	1 = Single loop mode enabled 0 = Single loop mode disabled

Page 22ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Register 000Fh

This register holds the threshold and hysteresis of the CORDIC magnitude value (see Register 0120h), at which the "Magnet Lost" flag in register 0107h is set/cleared.

Figure 29: Register 000Fh

Register	Access	Bit	Function	Default	Note
		D15 (MSB)	r	0	
		D14	r	0	
		D13	r	0	Reserved
		D12	r	0	
		D11	r	0	
		H2	Hyst	0	
	0Fh: R/W	H1	Hyst	0	Hysteresis for "magnet lost"
000Eh		H0	Hyst	1	
OUUFN:		V7	MgnLostLmt	0	
		V6	MgnLostLmt	0	
		V5	MgnLostLmt	0	
		V4	MgnLostLmt	0	Magnet lost threshold value
		V3	MgnLostLmt	0	compared to register 0121h
		V2	MgnLostLmt	0	
		V1	MgnLostLmt	1	
		V0 (LSB)	MgnLostLmt	1	

Note(s) and/or Footnote(s):

1. V7 to V0: The minimum allowed Magnitude of CORDIC can be selected. The binary number, represented by V7 to V0 must be multiplied with 64 to calculate the minimum allowed Magnitude of CORDIC.

ams Datasheet Page 23 **Document Feedback**

Figure 30:

Example: Select V0 and V1.

Binary								Decimal
V7	V6	V5	V4	V3	V2	V1	V0	Decimal
0	0	0	0	0	0	1	1	3

The corresponding dual number to 00000011 is 3 this number multiplied with 64 is the minimum allowed magnitude of CORDIC.

64 * 3 = 192 = Threshold limit

If the magnitude of CORDIC turns under 192 the MagLost bit in register 0107h will turn form 0 to 1.

H2...H0: The hysteresis around the minimum allowed magnitude of CORDIC can be selected.

The hysteresis *Hystd* is calculated by the formula

Hyst: Hysteresis value in Register 000Fh

Hystd : Decimal hysteresis value around the

minimum allowed magnitude of CORDIC

MgnLostLmt : The threshold limit as calculated in the

example above.

(EQ1) Hystd = MgnLostLmt
$$\times \frac{1}{2^{\text{Hyst}}}$$

Figure 31:

Example: Select H0

	Binary	Decimal	
H2	H1	H0	Decimal
0	0	1	1

(EQ2) Hystd = MgnLostLmt
$$\times \frac{1}{2^{\text{Hyst}}} = 192 \times \frac{1}{2^1} = 96$$

Now the MagLost bit in register 0107h will turn form 0 to 1 at a magnitude of CORDIC value lower than 192. After the MagLost bit is 0 it turns back to 1 at a value higher than 288, because 192 + 96 = 288.

Page 24

Document Feedback [v2-04] 2015-Oct-07

Register 0030h

E²PROM address

Figure 32: Register 0030h

Register	Access	Bit	Function	Note	
		D15 (MSB)	A15		
		D14	A14		
		D13	A13		
		D12	A12		
		D11	A11		
		D10	A10	T 1/ 1/ 5/2000M 1 1	
		D9	A9	To read/write E ² PROM contents, the selected E ² PROM address must be specified in	
0030h: E²PROM	R/W	D8	A8	this register. The corresponding data is available in register 0031h.	
address		D7	A7	For write operations, status bit ED in register 0107h which indicates the completion of a write operation	
		D6 A6 mu	must be verified before starting a new write cycle. Writing 16 bits of data requires ~10ms		
		D5	A5		
			D4	A4	
		D3	А3		
		D2	A2		
		D1	A1		
		D0 (LSB)	A0		

Note(s) and/or Footnote(s):

1. 1LSB=4mT.

ams Datasheet Page 25
[v2-04] 2015-Oct-07
Document Feedback

Register 0031h

E²PROM data

Figure 33: Register 0031h

Register	Access	Bit	Function	Note		
		D15 (MSB)	D15			
		D14	D14			
		D13	D13			
		D12	D12			
		D11	D11			
		D10	D10			
	DM R/W	D9	D9			
0031h: E²PROM			This register holds the E ² PROM contents of the			
data			D7	D7	address selected in register 0030h	
				D6	D6	
		D5	D5			
				D4	D4	
		D3	D3			
		D2	D2			
		D1	D1			
		D0 (LSB)	D0			

Page 26 $ams\, Datasheet$ **Document Feedback** [v2-04] 2015-Oct-07

Page 27

Register 0032h

Figure 34: Register 0032h

Register	Access	Bit	Function	Note
		D15 (MSB)	A15	
		D14	A14	
		D13	A13	
		D12	A12	
		D11	A11	
		D10	A10	
		D9	A9	
0032h: Page WRITE		D8	A8	To page write E ² PROM contents, the selected
E ² PROM address	IV VV	D7	A7	E ² PROM address must be specified in this register.
		D6	A6	
		D5	A5	
		D4	A4	
		D3	А3	
		D2	A2	
		D1	A1	
		D0 (LSB)	A0	

Register 0033h

Figure 35: Register 0033h

Register	Access	Bit	Function	Note
		D15 (MSB)	D15	
		D14	D14	
		D13	D13	
		D12	D12	
		D11	D11	
		D10	D10	
		D9	D9	
0033h: Page WRITE	R/W	D8	D8	To page write E ² PROM contents, the E ² PROM data
E ² PROM data	IN/ VV	D7	D7	must be specified in this register.
		D6	D6	
		D5	D5	
		D4	D4	
		D3	D3	
		D2	D2	
	-	D1	D1	
		D0 (LSB)	D0	

Page 28 $ams\, Datasheet$ **Document Feedback** [v2-04] 2015-Oct-07

Register 0107h

Status register; this register holds various status flags

Figure 36: Register 0107h

Register	Access	Bit	Function	Note
		D15 (MSB)	RDY	Indicates completion of a new measurement; same function as the "Ready" output pin. 0 = calculation is in progress or chip not ready 1 = measurement completed, new measurement data is stored in register 0110h-0114h and 0120h-0122h
		D14	MagLost	1 = Magnetic field values are too low for position measurement; the threshold level can be selected at Register 000Fh Bit D7 to D0
		D13	CorrOvfl	Ambiguous angle correction overflow
		D12	NormOvfl	Normalizing scale overflow
	0107h: R Status	D11	SensOvfl	Overflow during sensitivity correction over temperature
		D10	RngWarn	ADC overflow
0.07		D9	HistWarn	Histogram failure during ADC operation
Status		D8	CalcError	Or wired combination of RngWarn, HistWarn, NormOvfl, SensOvfl
		D7	D7	Reserved
		D6	D6	Reserved
		D5	D5	Reserved
		D4	D4	Reserved
		D3	D3	Reserved
		D2	D2	Reserved
		D1	MagDir	Detected or chosen orientation of magnet
		D0 (LSB)	ED	E^2 PROM write cycle: $0 = E^2$ PROM write cycle in progress $1 = E^2$ PROM write cycle completed

ams Datasheet Page 29
[v2-04] 2015-Oct-07
Document Feedback

Register 0108h

Cycle Redundancy Check (CRC):

Figure 37: Register 0108h

Register	Access	Bit	Function	Note
		D15 (MSB)	CRC15	
		D14	CRC14	
		D13	CRC13	
		D12	CRC12	
		D11	CRC11	
		D10	CRC10	
	CRC R	D9 0	CRC9	
0108h: CRC		D8	CRC8	Checksum reading check
0 TOOM. CITC	IX.	D7	CRC7	Checksum reading check
		D6	CRC6	
		D5	CRC5	
		D4		
		D3	CRC3	
		D2	CRC2	
		D1	CRC1	
		D0 (LSB)	CRC0	

Page 30ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Register 0110h

On-chip temperature sensor

Figure 38: Register 0110h

Register	Access	Bit	Function	Note
		D15 (MSB)	T15	
		D14	14	
		D13	T13	
		D12	T12	
		D11	T11	
		D10	T10	
	0110h: R	D9 T9		
		D8	Т8	On-chip temperature sensor
Temperature	IV.	D7	T7	Temperature [°C] = (Register 0110h / 200) + 25
		D6	T6	
		D5	T5	
		D4	T4	
		D3	Т3	
		D2	T2	
		D1	T1	
		D0 (LSB)	ТО	

Register 0111h

Magnetic field of Pixel cell 1; Z field sensor cell

Figure 39: Register 0111h

Register	Access	Bit	Function	Note
		D15 (MSB)		
		D14		
		D13		
		D12		
		D11		
	: R	D10	Bz1	
		D9		
0111h: Magnetic		D8		Magnetic field Bz of Pixel-cell 1
field value	IX.	D7		(1LSB=~4mT)
		D6		
		D5		
		D4		
		D3		
		D2		
		D1		
		D0 (LSB)		

Page 32 ams Datasheet **Document Feedback** [v2-04] 2015-Oct-07

Register 0112h

Magnetic field of Pixel cell 0; Z field sensor cell

Figure 40: Register 0112h

Register	Access	Bit	Function	Note
		D15 (MSB)		
		D14		
		D13		
		D12		
		D11		
		D10		
		D9	Bz0	Magnetic field Bz of Pixel-cell 0 (1LSB=~4mT)
0112h: Magnetic	R	D8		
field value	IX.	D7		
	,	D6		
		D5		
		D4		
		D3		
		D2		
		D1		
		D0 (LSB)		

Register 0113h

Magnetic field of Pixel cell 1; X field sensor cell

Figure 41: Register 0113h

Register	Access	Bit	Function	Note
		D15 (MSB)		
		D14		
		D13		
		D12		
		D11		
		D10		
		D9	Bx1 Magnetic field Bx of Pi (1LSB=~4mT)	
0113h: Magnetic	R	D8		Magnetic field Bx of Pixel-cell 1
field value	, , , , , , , , , , , , , , , , , , ,	D7		(1LSB=~4mT)
		D6		
		D5		
		D4		
		D3		
		D2		
		D1		
		D0 (LSB)		

Page 34ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Register 0114h

Magnetic field of Pixel cell 0; X field sensor cell

Figure 42: Register 0114h

Register	Access	Bit	Function	Note
		D15 (MSB)		
		D14		
		D13		
		D12		
		D11		
		D10		
		D9	Bx0	Magnetic field Bx of Pixel-cell 0 (1LSB=~4mT)
0114h: Magnetic	R	D8		
field value	n ,	D7		
		D6		
		D5		
		D4		
		D3		
		D2		
		D1		
		D0 (LSB)		

Register 0120h

CORDIC magnitude value; this is representing the strength of the magnetic field, as calculated by the CORDIC.

These values may for example be used to check the magnet for out-of-range conditions, or to issue a "weak magnetic field" warning when the value gets below a certain threshold.

(EQ3)
$$0120h = 0.82338 \times \sqrt{0111h^2 + 0113h^2}$$

(EQ4)
$$0120h = 0.82338 \times \sqrt{(0112h - 0111h)^2 + (0114h - 0113h)^2}$$

Figure 43: Register 0120h

Register	Access	Bit	Function	Note
0120h: Magnitude	R	D15 (MSB)	Mag	Magnitude value of CORDIC Calculation in absolute mode (DiffMd = 0) See EQ 3 Calculation in differential mode (DiffMd = 1) See EQ 4
		D14		
		D13		
		D12		
		D11		
		D10		
		D9		
		D8		
		D7		
		D6		
		D5		
		D4		
		D3		
		D2		
		D1		
		D0 (LSB)		

Page 36ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Register 0121h

CORDIC angle value; this is representing the (non-linearized) angle or direction of the magnetic field, as calculated by the CORDIC.

(EQ5) Ang[°] =
$$\frac{360}{65536} \times 0121h$$

(EQ6) Ang[°] =
$$\frac{576}{65536} \times 0121h$$

Figure 44: Register 0121h

Register	Access	Bit	Function	Note
		D15 (MSB)		
		D14		
		D13		
		D12		
		D11		
	R	D10	Ang	Ang [°]angle value of CORDIC [°]
		D9		0121h angle value of CORDIC [LSB] MgRangExt = 0: See EQ 5
0121h: Angle		D8		
012111.7kilgic		D7		
		D6		MgRangExt = 1: See EQ 6
		D5		
		D4		
		D3		
		D2		
		D1		
		D0 (LSB)		

ams Datasheet Page 37
[v2-04] 2015-Oct-07 Document Feedback

Register 0122h

This register holds the final, calculated and linearized position information

(EQ7)
$$\operatorname{LinAng}[^{\circ}] = \frac{360}{65536} \times 0122h$$

(EQ8)
$$LinAng[^{\circ}] = \frac{576}{65536} \times 0122h$$

Figure 45: Register 0122h

Register	Access	Bit	Function	Note	
		D15 (MSB)			
		D14			
		D13			
		D12			
		D11		This register holds the linearized 16-bit position	
		D10		information.	
		D9	LinAng	LinAng [°]linearized 16-bit position information [°] 0121h linearized 16-bit position information [LSB]	
0122h:	R	D8		o 12 mm unicanizca no six position unicanidatori [255]	
Position		D7		MgRangExt = 0: See EQ 7	
		D6		See EQ /	
		D5		MgRangExt = 1:	
		D4		See EQ 8	
		D3			
		D2			
		D1			
		D0 (LSB)			

Page 38ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

E²PROM

AS5410 is equipped with a 1kx8 E²PROM memory to store the factory settings and the customer configuration data. The device can be configured using the 4wire Serial Peripheral Interface (SPI).

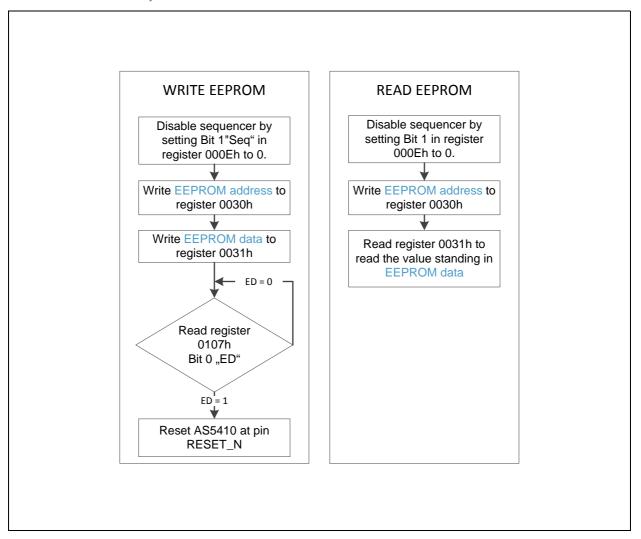
Figure 46: E²PROM Memory Map

Address (hex)	E ² PROM Location Name	Notes
000Bh	Sequencer control	
000Dh	PWM configuration	
000Fh	Magnet lost threshold and hysteresis	
005Fh	Angle linearization Table entry 16	
0060h	Angle linearization Table entry 0	
0061h	Angle linearization Table entry 1	
0062h	Angle linearization Table entry 2	
0063h	Angle linearization Table entry 3	
0064h	Angle linearization Table entry 4	
0065h	Angle linearization Table entry 5	
0066h	Angle linearization Table entry 6	
0067h	Angle linearization Table entry 7	
0068h	Angle linearization Table entry 8	
0069h	Angle linearization Table entry 9	Applied to CORDIC output
006Ah	Angle linearization Table entry 10	
006Bh	Angle linearization Table entry 11	
006Ch	Angle linearization Table entry 12	
006Dh	Angle linearization Table entry 13	
006Eh	Angle linearization Table entry 14	
006Fh	Angle linearization Table entry 15	
0070h	Angle linearization Table entry -16	
0071h	Angle linearization Table entry -15	
0072h	Angle linearization Table entry -14	
0073h	Angle linearization Table entry -13	

ams Datasheet Page 39
[v2-04] 2015-Oct-07
Document Feedback

Address (hex)	E ² PROM Location Name	Notes
0074h	Angle linearization Table entry -12	
0075h	Angle linearization Table entry -11	
0076h	Angle linearization Table entry -10	
0077h	Angle linearization Table entry -9	
0078h	Angle linearization Table entry -8	Applied to CORDIC output
0079h	Angle linearization Table entry -7	
007Ah	Angle linearization Table entry -6	
007Bh	007Bh Angle linearization Table entry -5	
007Ch	007Ch Angle linearization Table entry -4	
007Dh	007Dh Angle linearization Table entry -3	
007Eh	Angle linearization Table entry -2	
007Fh	Angle linearization Table entry -1	

Note(s) and/or Footnote(s):

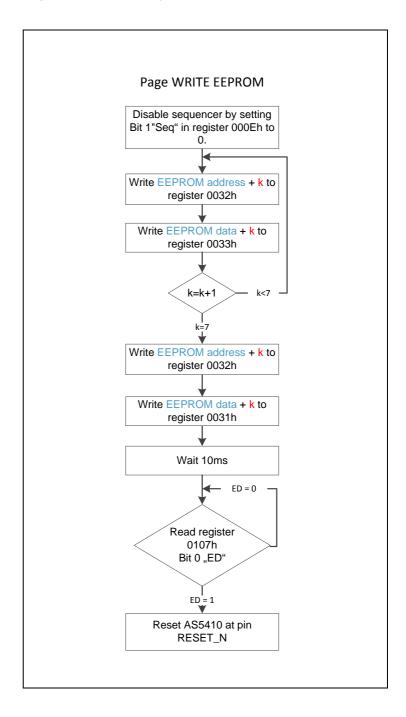

1. The Angle linearization points can be used to achieve higher precision at the angle output.

Page 40ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

E²PROM WRITE/READ

Figure 47: E²PROM WRITE/READ Cycle

For reading from the E²PROM the E²PROM address is written to register 0030h and the stored E²PROM data can be read from register 0031h.


For writing to the E²PROM the E²PROM address is written to register 0030h and the E²PROM data can be written to register 0031h. The write cycle is completed when the ED (E²PROM Done) bit is set to 1.

ams Datasheet Page 41
[v2-04] 2015-Oct-07
Document Feedback

E²PROM Page WRITE

Figure 48: Page E²PROM WRITE Cycle

Page 42ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Figure 49: E²PROM Page Index

PAGE	ADDRESS
0	0000h-0007h
1	0008h-000Fh
2	0010h-0017h
64	01F8h-01FFh

In order to write E²PROM content faster it is possible to use page WRITE. A page is 8 words of 16bit width tall and can be stored in the E²PROM during one WRITE cycle.

For page writing to the E²PROM the first 7 E²PROM addresses of one page are written to register 0032h and the appropriate E²PROM data can be written to register 0033h. The 8th EEPROM address of the page is written to register 0032h and the appropriate E²PROM data can be written to register 0031h. (Note: First 7th data parts are stored to the volatile memory. Only a write to register 0031h initiates the load cycle and the data is stored in the E²PROM.)

The write cycle is completed when the ED (E²PROM Done) bit is set to 1.

ams Datasheet Page 43
[v2-04] 2015-Oct-07 Document Feedback

Magnet Features

Magnet Range Extension

If the magnet is far away from the sensor, the field vectors in the sensor position can generate false angle information. By exploiting the magnetic field behavior it is still possible to calculate correct position information. As absolute field values are used during this calculation external disturbance fields must not exceed a maximum of approximately ten times the terrestrial magnetic field. The position range extending calculation method can be disabled if large disturbance fields occur during operation.

MgRangExt = 0: Angles between -180° and +180° can be measured

MgRangExt = 1: Angles between -288° and +288° can be measured

Figure 50: Register 000Bh

Register	Access	Bit	Function	Note	
		D11		"Magnet Range Extension" Enable the algorithm for an extended position range.	
000Bh: Sequencer R/V control	R/W		CoordSel	"Coordinate System Selection"	
		D10		1 = The sign of the LinAng (Register 0122h) gets changed if MagDir (Register 000Bh) = 1	
				0 = LinAng (Register 0122h) gets not changed	

Note(s) and/or Footnote(s):

- 1. Pins LOCK_N and SCE are test pins for factory testing. They must be connected to VSS in normal operation to prevent accidental enabling of a test mode
- 2. Output READY is set high when a measurement cycle is completed and the results in the output registers are valid. It is cleared by reading data from address 0100h or 0122h
- 3. CLK allows monitoring of the internal clock or applying an external clock.
- $4. \ Output\ MISO\ is\ only\ activated\ when\ CS_N\ is\ low.\ It\ is\ in\ high\ impedance\ state\ otherwise,\ this\ allows\ parallel\ operation\ of\ multiple\ ICs.$
- 5. CS_N is active low and activates data transmission. If only a single device is used, CS_N may remain low for several commands, for example while reading the output registers.

Page 44

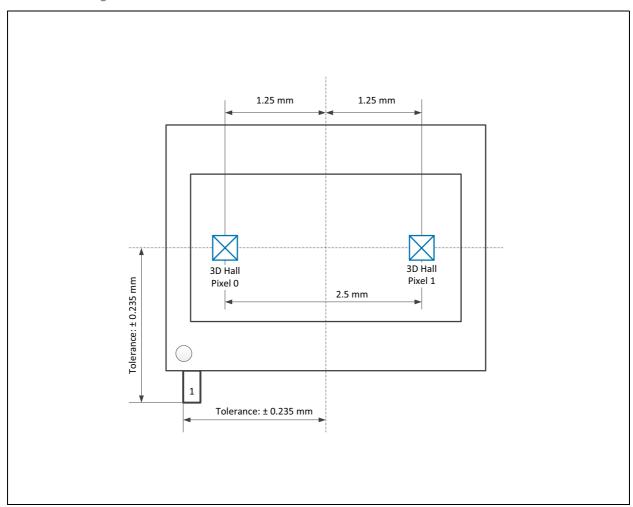
Document Feedback [v2-04] 2015-Oct-07

Application Information

The AS5410 can be used in linear sensing applications.

Figure 51:
Reference Setup for Absolute Linear Displacement Measurement

ams Datasheet Page 45
[v2-04] 2015-Oct-07
Document Feedback

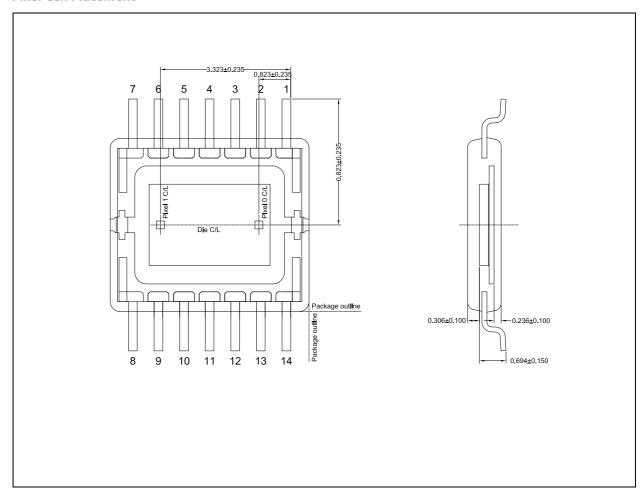


Sensor Placement

Two pixel cells each with an X-/Z-Sensor are arranged in a line on the X Axis parallel to the chip edge, 2.5mm distant from each other. Pixel positions relative to chip centre are:

Pixel 0: -1250 μm Pixel 1: 1250 μm

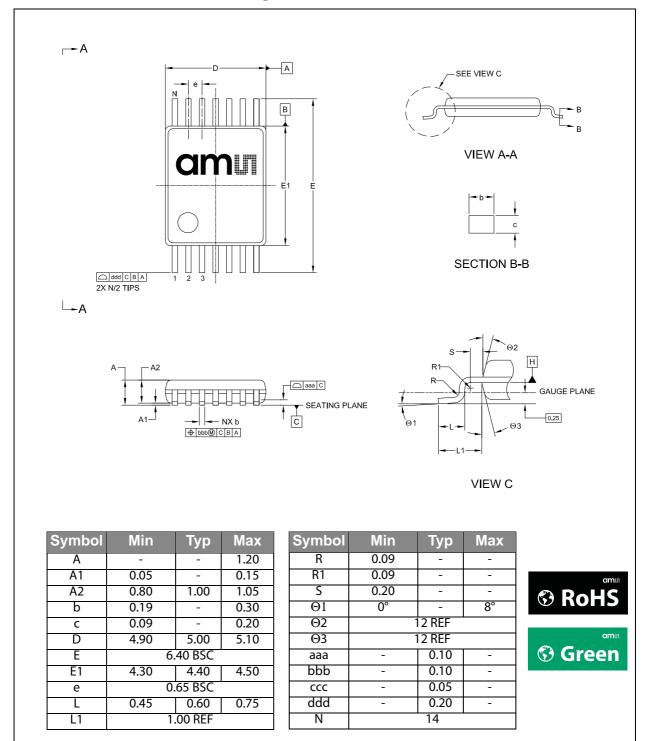
Figure 52: Pixel Cell Arrangement



Page 46ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Package Drawings & Markings

Figure 53: Pixel Cell Placement


Note(s) and/or Footnote(s):

- 1. All dimensions in mm.
- 2. Die thickness 203μm nom.
- 3. Adhesive thickness 30 \pm 15 μ m.
- 4. Leadframe downest 152 \pm 25 μ m.
- 5. Leadframe thickness 125 \pm 8 μm

ams Datasheet Page 47
[v2-04] 2015-Oct-07
Document Feedback

Figure 54: 14-Lead Thin Shrink Small Outline Package TSSOP-14

Note(s) and/or Footnote(s):

- 1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters (angles are in degrees).
- 3. N is the total number of terminals.

Page 48 ams Datasheet [v2-04] 2015-Oct-07

Figure 55: **AS5410 Marking**

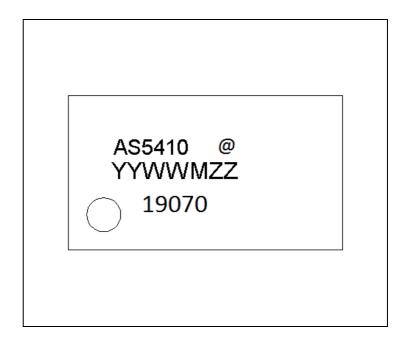


Figure 56:

Packaging Code: YYWWMZZ@

YY	WW	M	ZZ	@
Year	Manufacturing week	Plant identifier	Free choice/traceability code	Sublot identifier

ams Datasheet Page 49 Document Feedback

Ordering & Contact Information

The devices are available as standard products, shown in Figure 57.

Figure 57: Ordering Information

Model	Package	Marking	Delivery Form	Delivery Quantity
AS5410-ZTST	TSSOP-14	AS5410	13" Tape & Reel in dry pack	4500
AS5410-ZTSM	TSSOP-14	AS5410	7" Tape & Reel in dry pack	500

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at: www.ams.com/Technical-Support

Provide feedback about this document at: www.ams.com/Document-Feedback

For further information and requests, e-mail us at: ams_sales@ams.com

For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

Page 50

Document Feedback

[v2-04] 2015-Oct-07

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

ams Datasheet Page 51
[v2-04] 2015-Oct-07 Document Feedback

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Page 52

Document Feedback

[v2-04] 2015-Oct-07

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

ams Datasheet Page 53 **Document Feedback**

Revision Information

Changes from 2.1 (2015-Aug-15) to current revision 2-04 (2015-Oct-07)	Page				
2.1 (2015-Aug-15) to 2-01 (2015-Aug-28)					
Content was updated to the latest ams design, altered content structure					
Added figures 53 and 54					
2-01 (2015-Aug-28) to 2-02 (2015-Sep-18)					
Removed E ² PROM Linearization Table 005Fh to 007Fh					
Updated General Description section	1				
Updated Pin Assignment section	5				
Updated Electrical Characteristics section	7				
Updated Figure 14	13				
Updated Figure 17	15				
Updated Figure 18	17				
Updated Figure 19	17				
Updated Figure 32 and added note under it	25				
Added Registers 0032h and 0033h	27; 28				
Updated Figure 39	32				
Updated Figure 40	33				
Updated Figure 41	34				
Updated Figure 42	35				
Added E ² PROM section	39				
2-02 (2015-Sep-18) to 2-03 (2015-Sep-30)					
Updated Figure 6	7				
2-03 (2015-Sep-30) to 2-04 (2015-Oct-07)					
Updated Figure 15	13				
Updated Figure 16	14				
Updated Figure 19	17				

Note(s) and/or Footnote(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision
- 2. Correction of typographical errors is not explicitly mentioned.

Page 54ams DatasheetDocument Feedback[v2-04] 2015-Oct-07

Content Guide

1 General Description

- 2 Key Benefits & Features
- 2 Applications
- 3 Block Diagram

5 Pin Assignment

- 5 Pin Diagram
- 5 Pin Description

7 Electrical Characteristics

- 7 Absolute Maximum Ratings
- 8 Operating Conditions
- 8 System Performance Specifications
- 9 DC Characteristics for Digital Inputs and Outputs
- 9 CMOS Schmitt-Trigger Inputs: LOCK_N, RESET_N, CLK, MOSI, SCK, CS_N
- 9 CMOS Outputs: READY, MISO, PWM
- 10 Power On Reset
- 10 RESET_N
- 11 On-Chip Temperature Measurement

12 Detailed Description

- 12 Power Modes
- 12 Continuous Mode
- 12 Single Loop Mode
- 12 Serial Interface (SPI)
- 15 Data Transfer Between AS5410 and Microcontroller
- 15 Read Mode
- 16 Continuous Measurement
- 16 Write Mode and Readback
- 16 Checksum
- 17 PWM Data Transmission

20 Register Description

- 20 Register 000Bh
- 22 Register 000Dh
- 22 Register 000Eh
- 23 Register 000Fh
- 25 Register 0030h
- 26 Register 0031h
- 27 Register 0032h
- 28 Register 0033h
- 29 Register 0107h
- 30 Register 0108h
- 31 Register 0110h
- 32 Register 0111h
- 33 Register 0112h
- 34 Register 0113h
- 35 Register 0114h
- 36 Register 0120h
- 37 Register 0121h
- 38 Register 0122h
- 39 E²PROM
- 41 E²PROM WRITE/READ
- 42 E²PROM Page WRITE

- 44 Magnet Features
- 44 Magnet Range Extension
- 45 Application Information
- 46 Sensor Placement
- 47 Package Drawings & Markings
- 50 Ordering & Contact Information
- 51 RoHS Compliant & ams Green Statement
- 52 Copyrights & Disclaimer
- 53 Document Status
- 54 Revision Information

Page 56ams DatasheetDocument Feedback[v2-04] 2015-Oct-07